
Project Part 3
736 Neural Networks and Machine Learning

Nic Manoogian
Robert Bond III

Zach Lauzon

Executive Summary

In the third part of our project, we maintain our original problem and data
sets: create an optimal agent for playing Nintendo’s Super Mario Bros.. In
this document, we employ a deep learning model called a Deep Q Network
(DQN) in an attempt to create an agent which is superior to the one created
by the NEAT algorithm.

In this document, we describe deep Q learning and some of its important
hyperparameters; we describe our methodology and experiments; we discuss
the findings of these experiments; and we compare the performance of the
DQN with the neural network produced by the NEAT algorithm.

Overall, we found the following trends:

1. Higher-resolution DQN inputs yield better performance but take far
longer to train.

2. A linearly-increasing discount factor yields better performance long-
term.

3. A larger minibatch size had little performance benefits but significantly
slowed down computation.

4. Although our best NEAT agent has an overall higher score, the agent
created by the DQN algorithm seems to have higher potential and is
distinct in a somewhat “skillful” way.

Requirements

The goal of this project is to employ a “deep learning” technique to solve
a problem. Such methods model high-level abstractions in data by using



multiple neural network layers with complex structures. Relevant examples
include Recurrent Neural Networks (RNNs) and Convolutional Neural Net-
works (CNNs).

In this part of the project, we use Deep Q Reinforcement Learning to
play Super Mario Bros. We feel that this type of deep learning will be
well-suited to the task and should yield a very effective game-playing agent.
DQNs are complex and composed of heterogeneous layers — including several
convolutional layers.

In this paper, we describe the hyperparameters of the deep Q learning
algorithm; select a subset of these hyperparameters; and we justify our selec-
tions in the context of both Super Mario Bros. and the original DeepMind
paper.

Specification

In a 2015 paper, Mnih and colleagues (“the DeepMind team”) use DQN
to process raw pixel input and play Atari 2600 games. During training,
experience replay is used; here, the agent’s experiences are stored at each
time-step and pooled into a replay memory. Randomly-sampled experiences
from memory are fed into a convolutional neural network as part of the
training process. The original network consists of 84 × 84 × 4 preprocessed
inputs followed by three convolutional layers and two fully-connected layers
with a single output for each action that the agent could take (Mnih et al.,
2015).

Deep Q Learning Overview

Deep Q learning is a multi-step process. The system takes input in the form
of a “state,” s. This object is composed of h game states. In the game
Breakout, the game state is one preprocessed image (84 × 84), so the DQN
state is composed of h of these images. The system produces one output for
each valid action, a. This output is an approximation of the “utility” of this
action, represented by the function Q.

The system uses epsilon greedy selection to choose among these Q-scored
actions. This proceeds as follows: With probability ε, select a random action
a. Otherwise, select a = argmax aQ(s, a).



Once a is selected, it is executed in the emulator, a new state is generated,
which has a new Q value. From this, we calculate the reward r which was
associated with this action. This process captures testing with a DQN.

To learn, we also store the transition (st, at, rt, st+1) into D, the re-
play memory of capacity N . We then sample a random minibatch from
D. For each sample j, we compute a target output for the new Q func-
tion, yj = rj + γmax a′Q(sj+1, a′). We then perform a gradient descent on
(yj − Q(sj, aj))

2 with respect to the network parameters θ. This method of
learning is designed to propagate rewards (such as beating a level) back to
earlier states.

The DeepMind team did indeed release their source code (https://
github.com/kuz/DeepMind-Atari-Deep-Q-Learner), allowing us to reuse
the original DQN implementation. However, this code is designed work only
with an Atari emulator to play Atari games. In order to use this implemen-
tation, we modify the original code to work with QuickNES — a popular
NES emulator.

Reward Function

Similar to the fitness function used in the NEAT algorithm, deep Q learning
requires a reward function. Given states s1 and s2, the reward function R
returns the (positive or negative) instantaneous utility of the transition from
s1 to s2.

Deep Q Network Structure

The deep Q network described in the original paper consists of several con-
volutional layers and one hidden layer. Specifically,

1. A hidden layer which convolves 32 filters of 8×8 with stride 4 with the
input tensor (84× 84× 4) and applies a rectifier nonlinearity

2. A second hidden layer which convolves 64 filters of 4× 4 with stride 2,
also followed by a rectifier nonlinearity

3. A third hidden layer which convolves 64 filters of 3 × 3 with stride 1,
followed by a rectifier

4. A final hidden layer which is fully-connected and consists of 512 rectifier
units

https://github.com/kuz/DeepMind-Atari-Deep-Q-Learner
https://github.com/kuz/DeepMind-Atari-Deep-Q-Learner


5. An output layer which is a fully-connected linear layer with a single
output for each valid action

Implementation

Required Modifications

The original code from DeepMind is designed specifically to work with Atari
2600 games. In order to use the algorithm to generate an agent for Super
Mario Bros., we make a number of modifications to both our original feature
selection and the DQN code:

1. Change DQN to use a different emulator. The original DeepMind code
is written in Lua but uses Xitari to simulate the original Atari 2600.
We run our modified Lua code in the QuickNES emulator.

2. Adjust input tensors. To play Breakout on the Atari, the original au-
thors preprocessed display pixels (210×160 with a 128-color palette) to
produce an greyscale input (84×84). Breakout is a simple game and its
features can be easily reduced to greyscale pictures. Super Mario Bros.,
by contrast, is much more complex. The same enemy may look entirely
different from one level to the next. For this reason, we continue to use
our sprite-based feature selection but with a larger bounding box and
a higher resolution. In this new feature selection system, we create a
n × n input tensor with 0.0 representing empty air, 0.5 represents an
enemy, and 1.0 represents a solid block.

3. Specify a reward function. In Breakout, the reward for going between
two states is simply the number of blocks destroyed between s1 and s2.
In Super Mario Bros., conversely, we use Mario’s differential X position
as a reward. This encourages movement through the level, discourages
backward movement, but does not penalize the agent for halting to
allow enemies to move out of an optimal path.

Scoring and Performance Evaluation

During the second project installment, we proposed a fitness function for
scoring NEAT agent. At first glance, it seems reasonable to extend this



scoring method to DQN agents. However, on closer inspection, this method
of evaluation imposes some unfair criteria on the DQN agent. To improve
convergence in our NEAT agents, we penalize networks for “divergent” be-
haviors such as standing still (taking no action). Because the DQN agent
can converge without such penalties, it seems unfair to impose them when
evaluating performance.

For this reason, we propose a new function: S(p, l) = x. That is, given an
agent p and a level l, the performance of that agent is x, the total X distance
in pixels that the agent was able to traverse in the level before either victory
or defeat.

Source Code and Dependencies

Our code is attached with this submission but requires a relatively powerful
machine to train and learn. Specifically, we run all tests on an AWS EC2
g2.2xlarge with 26 ECUs, 8 vCPUs, 2.6 GHz, an Intel Xeon E5-2670, 15 GiB
memory, and 60 GiB Storage Capacity.

The code relies on the following dependencies (which can be installed
using a script in our code repository):

• Torch http://torch.ch

• CUDA https://github.com/torch/cutorch

• Headless QuickNES https://github.com/Bindernews/HeadlessQuickNes

Experiments

Input Resolution

Rather than providing raw pixel inputs to the DQN, we provide the network
with an n × n tensor of features (i.e. empty air, enemies, or blocks). Thus,
each of the n2 tiles have the dimensions (s × s), where M is the screen size
in pixels and s = M

n
.

It seems intuitive that higher-resolution inputs yield more precise play,
and thus, better performance. But it also follows that such inputs will also
yield slower running times due to the growth in search space.

To determine the effects of resolution beyond speculation, we test two
values: s = 4 and s = 16.

http://torch.ch
https://github.com/torch/cutorch
https://github.com/Bindernews/HeadlessQuickNes


Annealing Discount-Factor

In the original DeepMind algorithm, the exploration hyperparameter, ε, is
annealed. That is, ε = 1 in the beginning but decreases linearly to ε = 0.1
over the course of 1000000 frames. Recall that the agent will ignore the Q
values of actions and choose among the set randomly with the probability of
ε. Intuitively, a high ε value is good during the first phase of learning because
the agent needs behave randomly to explore different techniques. Once the
agent accumulates more experiences, he may start relying on his Q function
and converge on the optimal style of play.

The discount factor γ, is another hyperparameter in the deep Q learning
algorithm. Essentially, it represents the degree to which the reward for tran-
sitioning into a state propagates back to intermediate states. For example,
consider a game where transitioning into the terminal state yields a reward of
100. During training, a state that transitions into this terminal state would
have a reward of r+γ100 where r is the intrinsic reward of transitioning into
the state. Following a similar line of intuition as for the exploration hyper-
parameter, an annealed discount factor may be valuable. During the initial
phase of the game, propagating reward into intermediate states implicitly
discourages exploration by encouraging familiar actions which led to reward.
By keeping γ small in the beginning and increasing it linearly over time,
we hypothesize that the agent will have a greater opportunity to explore
different styles of play. Additionally, some research has shown that anneal-
ing the discount factor in this way can produce the same performance as
a non-γ-annealed DQN in significantly fewer learning steps (François-Lavet,
Fonteneau, & Ernst, 2015).

Larger Minibatch Size

As described in the DQN overview, a “minibatch” of transitions is sampled
from D during training. In the original DeepMind implementation, b = 32
samples were selected. Without intuition or insightful research to support
us, we decided to try a larger minibatch size of b = 64.



Experiments Enumerated

ID Resolution Annealing Discount Factor Minibatch Size Running Time Color
e0 4 No 32 8 hours green
e1 16 No 32 8 hours red
e2 8 No 64 16 hours orange
e3 8 Yes 32 40 hours blue

Results

Experiments 0 and 1

These first experiments are designed to evaluate the value and costs associ-
ated with down-sampling the agent’s input tensor. As shown below, a finer
resolution seems to reach a higher potential but at a higher computational
cost. We test s = 4 (high resolution, e0) and s = 16 (low resolution, e1) and
decide that a compromise between the two would be best for further testing.
Thus, we settle on s = 8.

Figure 1: Experiments 0 and 1



Experiment 2

In this experiment, we test the effects of a larger minibatch size. We test
b = 64 and compare it to all other experiments which run b = 32. As shown
below, a higher minibatch size does not seem to affect game performance but
does slow down the system significantly. Thus, we proceed with a minibatch
size of b = 32.

Figure 2: Experiments 0, 1 and 2

Experiment 3

In this final experiment, we test an annealed discount factor and compare
it to all other experiments with a constant discount factor. As shown be-
low, the annealed discount factor significantly improves performance with no
significant computational cost. As expected, the networks produces lower
scores during the annealing period (the first million steps), and then rapidly
achieves higher scores.



Figure 3: Experiments 0, 1, 2, and 3 - https://plot.ly/~ZachLauzon/109/
average-score-during-training/

DQN vs. NEAT

Our best NEAT agent reaches an average S score (across all tested levels) of
2136. Our best DQN agent (the result of Experiment 3) reaches an average
S score of 1068. It should be noted that the NEAT agent was allowed to
train for far longer than the DQN agent.

The DQN agent also exhibits a few interesting patterns of behavior, that
in many ways, is skillful. In particular, the agent:

• seems to “wait” to allow enemies to pass through critical areas of the
level,

• will backtrack though parts of a level if no progress can be made on
the agent’s current path,

• and seems to learn techniques such as jumping on Koopas and kicking
their shells to clear lines of enemies.

It should be noted that these behaviors were never exhibited by our NEAT
agent. In other words, our NEAT agents appear to achieve goals “with luck”
while the DQN agent appears to achieve goals “with skill.” It is our overall

https://plot.ly/~ZachLauzon/109/average-score-during-training/
https://plot.ly/~ZachLauzon/109/average-score-during-training/


sense that the DQN agent, although not currently the highest-scoring, has
far greater potential than NEAT.

Resource Consumption

The following table summarizes the resources consumed during training by
both NEAT and DQN:

Method CPU Utilization RAM GPU Utilization GPU Memory
NEAT 100% 100MB None None
DQN 100% 1.6GB 80% 700MB

During testing, DQN uses the same amount of resources, while NEAT uses
25% CPU and 5MB of RAM. It is clear that the DQN approach requires far
more resources than NEAT, but we find the use reasonable given the nature
of image-based problems. DQN’s RAM usage is likely due to the replay
history feature of DQN.

Further Research

We see several very interesting avenues in further developing our DQN agent:

1. Annealing the learning rate. Our tests reveal that an annealed discount
factor is effective in increasing the performance of an agent. Perhaps
annealing the learning rate will also be effective.

2. Using actual pixel values rather than feature-selected inputs. By impos-
ing our own feature selection, we may be restricting the algorithm from
creating the optimal player.

3. Including the score of the game as a factor in the reward function.
Using the game score as a reward in deep Q learning would encourage
behaviors such as jumping on enemies, collecting coins, and getting
power-ups.

4. Including Up and Down buttons into the agent actions. Although Su-
per Mario Bros. can be beaten without pressing Up or Down, there
are some more advanced techniques that can only achieved by press-
ing these buttons. It would be very interesting to see what kinds of



techniques are learned when the agent has the capacity to make more
complex and advanced decisions.

5. Implementing negative rewards. By only using Mario’s differential x
position in the level, we do not negatively reward falling to pits or
making contact with enemies. It is merely the impossibility of further
rewards that makes such actions undesirable to the current agent. By
levying a cost for these actions, we may see faster convergence when it
comes to avoiding negative outcomes. An unfortunate property of tra-
ditional Q-learning is that negative rewards are not propagated back-
wards. Research in Q-learning by (Fuchida, Aung, & Sakuragi, 2010)
that considers negative rewards could solve this issue.



References

François-Lavet, V., Fonteneau, R., & Ernst, D. (2015). How to dis-
count deep reinforcement learning: Towards new dynamic strate-
gies. CoRR, abs/1512.02011 . Retrieved from http://arxiv.org/abs/

1512.02011

Fuchida, T., Aung, K. T., & Sakuragi, A. (2010). A study of q-learning
considering negative rewards. Artificial Life and Robotics , 15 (3), 351–
354. Retrieved from http://dx.doi.org/10.1007/s10015-010-0822

-7 doi: 10.1007/s10015-010-0822-7
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,

M. G., . . . Hassabis, D. (2015, Feb 26). Human-level control through
deep reinforcement learning. Nature, 518 (7540), 529-533. Retrieved
from http://dx.doi.org/10.1038/nature14236 (Letter)

http://arxiv.org/abs/1512.02011
http://arxiv.org/abs/1512.02011
http://dx.doi.org/10.1007/s10015-010-0822-7
http://dx.doi.org/10.1007/s10015-010-0822-7
http://dx.doi.org/10.1038/nature14236

	References

