Project Part 4
736 Neural Networks and Machine Learning
Nic Manoogian
Robert Bond III
Zach Lauzon

Executive Summary

During the course of this project, we’'ve investigated two methods of training
an agent to play Super Mario Bros. using reinforcement learning. The first,
Neuroevolution of Augmenting Topologies (NEAT) (Stanley & Miikkulainen),
2002)), was effectively employed to create an agent which is capable of beating
several levels of the game. The second, Deep () Learning / Deep @ Network
(DQN) (Mnih et al., [2015)), was employed to yield a slightly less-performant
agent but with a novel style of play. Specifically, the DQN agent does not beat
as many levels as the DQN agent, but demonstrates “skill” by performing
multi-frame techniques.

Requirements and Specification

During the course of this paper, we will summarize, analyze, and compare
the results of our experiments conducted on the NEAT and DQN agents.
Such comparisons will include each algorithm’s,

e performance in terms of levels beaten,
e resource consumption (CPU, GPU, Main Memory, and GPU Memory),
e and projected growth of performance over time.

Further, we will outline some of the challenges associated with empirically
comparing these agents. And lastly, we will provide our own impressions of
each agent using subjective measures such as “skill” and “style-of-play.”



Experiments

While exploring NEAT and D@N, we conducted a series of experiments to
test the hyper-parameters of each algorithm.

NEAT Experiment Overview

Recall, we generated 32 experiments (named e0 through e31) by combining
all possible high and low values for the selected NEAT hyper-parameters.
The list of hyper-parameters we tested are as follows: Population, Maz Stag-
nation, Add Link Chance, Add Node Chance, and Step Size. For a breakdown
of each experiment and the results we achieved, refer to our Project 2 paper’s
Ezxperiments and Results section.

DQN Experiment Overview

Due to limited computation resources, we conducted fewer experiments on
DQN. Recall, we generated 4 experiments (named e0 through e3) by testing
different applications of the following hyper-parameters: Discount Factor,
Minibatch Size, Running Time, and Color. For more detail on these hyper-
parameters and their implications, see our Project 3 paper’s Experiments
and Results section.



Results Analysis

NEAT Analysis Overview

160k

140k

120k

100k

Fitness

80k

GOk

40k

20k

All Experiments

eee # S0 @me s
. p. . . . .
- --‘a|—- s g [ --—_h %000

"QO -..-'

:-.,..-.ﬁ““‘,?ﬂﬁ-: ﬂ

o n"® B .“. s
- :

] 0.58 1B 158 2B 258 3B

Frames

e5
el
el9
e3
el3
el7
elf
e28
e30
ed
eb
e2i
el2
e29
ell
e31
ed

In our Project 2 paper, we outline the specific hyper-parameters that were
tested during our NEAT research. The figure above illustrates our NEAT
agent’s growth during training. As we see here, the different combinations
of hyper-parameters changed the performance of the agent but the shape of
the function appears to be the same in all cases. Indeed, all of our generated
NEAT agents converge asymptotically to a fitness value between 40-thousand
and 160-thousand. Our best NEAT agent beats 11 of the 22 tested levels.
More specific findings are reported in our Project 2 paper.



DQN Analysis Overview

| AL
L ‘l i H\W ‘( 'Wl“ ‘||“H ‘

AI#' { ‘

i ’

',,c"

f ‘,riﬁ“‘ \”M

sssss

In our Project 3 paper, we again hyper-parameters that were tested during
our DQN research. The figure above illustrates the DQN agent’s growth
during training. Similar to our NEAT agent, the different iterations of our
DQN agent converge asymptotically with different performance scores. Our
best DQN agent beat 2 out of the 22 tested levels. Again, more specific
findings are reported in our Project 3 paper.

Comparison

It is difficult to compare the DQN and NEAT agents due to the type of
reinforcement that we administer to each. The NEAT agent is evaluated (and
thus rewarded) using the fitness function defined formally in the Project 2
paper. This function rewarded the agent for increasing its X position in the
level and for beating the level while we punish the agent (a negative reward)
for being defeated and spending time in the level. This fitness function was
selected to encourage fast movement through the level. Without the negative
rewards, NEAT algorithm would be very slow to create players that quickly
move through the game.

The DQN algorithm does not need the same penalties to perform well.
We simply provide the DQN agent with a reward for right-ward X movement
and let the algorithm do the rest. The DQN agent is implicitly penalized for
defeat because it can no longer move right.



Because these two agents are scored differently, we defined a new scoring
function S which was formally defined in the Project 3 paper as the player’s
X position in the level. Our best NEAT agent reaches an average S score
of 2136. Our best DQN agent reaches an average S score of 1068. However,
it should be noted that the NEAT agent was allowed to train for far longer
than the DQN agent.

Not captured by the S-score, the DQN agent also exhibits a few interest-
ing patterns of behavior, that in many ways, are skillful. In particular, the
agent:

e seems to “wait” to allow enemies to pass through critical areas of the
level,

e will backtrack though parts of a level if no progress can be made on
the agent’s current path,

e and seems to learn techniques such as jumping on Koopas and kicking
their shells to clear lines of enemies.

It should be noted that these behaviors were never exhibited by our NEAT
agent. In other words, our NEAT agents appear to achieve goals “with luck”
while the DQN agent appears to achieve goals “with skill.” It is our overall
sense that the DQN agent, although not currently the highest-scoring, has
far greater potential than NEAT for this very reason.

Resource Consumption

The following table summarizes the resources consumed during training by

both NEAT and DQN:

Method | CPU Utilization | RAM | GPU Utilization | GPU Memory

NEAT 100% 100MB None None

DQN 100% 1.6GB 80% 700MB

It should be noted that NEAT utilizes a cluster of computers, whereas
DQN runs on a single machine.

During testing, DQN uses the same amount of resources, while NEAT uses
25% CPU and 5MB of RAM. It is clear that the DQN approach requires far
more resources than NEAT, but we find the use reasonable given the nature
of image-based problems. DQN’s RAM usage is likely due to the replay
history feature of deep Q learning.



Final Impressions

While our best NEAT agent does currently outperform our best DQN agent,
there are some significant differences between the agents’ styles of play.

Consider a particular part of level 2-1, depicted at https://imgur.com/
a/tKMJIM. As shown, the NEAT agent sprints directly through a tight area of
the world; just barely avoiding enemies in its path. In the same part of the
level, the DQN agent actually backtracks to avoid and attack these enemies.
While a certain “style-of-play” cannot be quantified empirically, it is clear to
a human observer that there is a distinct type of intelligence associated with
the DQN agent in contrast to the NEAT agent. It is our impression that the
DQN agent has more potential and capacity to improve with more training
time.

The novel behaviors exhibited by DQN best reflect our goals which we
described originally in the Project 1 paper. We were looking for a machine
learning agent capable of playing Super Mario Bros. in a new way; DQN
may very well be the solution that we set out to find.


https://imgur.com/a/tKMJM
https://imgur.com/a/tKMJM

References

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,
M. G., ... Hassabis, D. (2015, Feb 26). Human-level control through
deep reinforcement learning. Nature, 518(7540), 529-533. Retrieved
from http://dx.doi.org/10.1038/nature14236 (Letter)

Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through
augmenting topologies. Evolutionary Computation, 10(2), 99-127. Re-
trieved from http://nn.cs.utexas.edu/7stanley:ec02


http://dx.doi.org/10.1038/nature14236
http://nn.cs.utexas.edu/?stanley:ec02

	References

